Схема электронного зажигания для автомобиля. Схема блока электронного зажигания Электронное зажигание искра 3 схема

Общеизвестно, что воспламенение топлива в двигателях внутреннего сгорания происходит благодаря искре от свечи зажигания, напряжение которого может достигать 20 Кв (если свеча полностью исправна).

На некоторых двигателях, для полноценной его работы иногда необходима энергия значительно больше, чем могут дать 20 Кв. Для решения данной проблемы и создана специальная электронная система зажигания. В российских отечественных автомашинах применяются обычные системы зажигания. Но все они имеют очень большие минусы.

Когда авто стоит на холостом ходу, в прерывателе, а иемнно между контактами появляется дуговой разряд, который поглощает большую часть энергии. При достаточно больших оборотах вторичное напряжение на катушке уменьшается из-за дребезга этих контактов. В результате чего это приводит к плохой аккумуляции энергии для образования искры зажигания. Из-за чего значительно снижается КПД двигателя автомобиля, увеличивается объем CO2 в выхлопной системе, топливо практически полностью не расходуется, автомашина прожирает топливо просто так.

Большим минусом старых систем зажигания является быстрота износа контактов прерывателя. Обратной же стороной этой медали является то, что эти системы с многоискровой механической распределителем, его называют также «Трамблер»ом, простота, которая обеспечивается 2-ной функцией механизма распределителя.

Для того чтобы повысить вторичное напряжение, которое генерируется такой системой, можно воспользовавшись приборами, на основе полупроводников, которые будут работать в качестве ключей управления. Именно они будут прерывать ток в первичной обмотке катушки. В качестве таких ключей сегодня используются транзисторы, которые генерируют токи до десяти Ампер без всяких повреждений и искр. Существуют экземпляры, построенные на базе тиристоров, но из-за своей нестабильности широкого применения они не нашли.


Одним из вариантов модернизации БСЗ – переделка в контактно-транзисторную систему зажигания (КТСЗ).


На схеме проиллюстрировано устройство КТСЗ.

Данное устройство генерирует искру с достаточно большой длительностью. И благодаря чему сгорание топлива становится оптимальным. По схеме можно разобрать, что система построена на основе так называемого триггера Шмитта. Собран он из транзисторов V1 и V2, усилителя V3, V4 и ключа V5. Здесь ключ выполняет роль коммутатора тока на обмотке катушки.


Триггер предназначен для генерации импульсов с достаточно широким спадом и фронтов при замыкании контактов в прерывателе. В результате чего на первичной обмотке увеличивается быстрота прерывания тока, что в свою очередь намного увеличивает амплитуду напряжения на вторичной обмотке.

Это увеличивает шансы для возникновения более мощной искры, которая способствует улучшению запуска мотора и полному результативному расходу топлива.

В сборке были использованы:
Транзисторы VI, V2, V3 — KT312B, V4 — KT608, V5 - KT809A, C4106.
Конденсатор – С2 (от 400 Вольт)
Катушка B115.

Ощутимо изменилась и мощность, подводимая к катушке зажигания. На частоте 20 Гц при катушке Б-115 она достигает 50...52 мДж, а на 200 Гц - около 16 мДж. Расширены также пределы питающего напряжения, в которых блок работоспособен. Уверенное искрообразование при пуске двигателя обеспечивается при бортовом напряжении 3,5 В, но работоспособность блока сохраняется и при 2,5 В. На максимальной частоте искрообразование не нарушается, если питающее напряжение достигает 6 В, а длительность искры - не ниже 0,5 мс.
Указанные результаты получены главным образом за счет изменения режима работы преобразователя, особенно условий его возбуждения. Эти показатели, которые, по мнению автора, находятся на практическом пределе возможностей при использовании всего одного транзистора, обеспечены также применением ферритового магнитопровода в трансформаторе преобразователя.
Как видно из принципиальной схемы блока, показанной на рис 1, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора. Функции пускового и разрядного диодов(соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает болев надежный запуск генератора после каждого цикла искрообраэования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1. Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.
Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и VD3. Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки и трансформатора. Средний уровень напряжения на накопительном конденсаторе уменьшен до 345...365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.
В разрядной цепи конденсатора С1 использован стабистор VD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода. При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении, (подобно диоду VD9 исходного блока). Конденсатор С3 обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1. Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.
В блоках электронного зажигания с многократной разрядкой накопительного конденсатора на катушку зажигания длительность искры и в определенной степени ее мощность определяет качество тринистора, поскольку все периоды колебаний, кроме первого, создаются и поддерживаются только энергией накопителя. Чем меньше затраты энергии на каждое включение тринистора, тем большее число запусков будет возможно и тем большее количество энергий (и за большее время) будет передано катушке зажигания. Крайне желательно поэтому подобрать тринистор с минимальным открывающим током.
Хорошим можно считать тринистор, если блок обеспечивает начало искрообразования (с частотой 1...2 Гц) при питании блока напряжением 3 В. Удовлетворительному качеству соответствует работа при напряжении 4...5 В. С хорошим тринистором длительность искры равна 1,3...1,5 мс, при плохом - уменьшается до 1... 1,2 мс.
При этом, как это ни покажется странным, мощность искры в обоих случаях будет примерно одинаковой по причине ограниченной мощности преобразователя. В случае большей длительности конденсатор-накопитель разряжается практически полностью, начальный (он же средний) уровень напряжения на конденсаторе, задаваемый преобразователем, несколько ниже, чем в случае с меньшей длительностью. При меньшей же длительности начальный уровень более высок, но высок и остаточный уровень напряжения на конденсаторе из-за его неполной разрядки.


Таким образом, разность между начальным и конечным уровнями напряжения на накопителе в обоих случаях практически одинакова, а от нее и зависит количество вводимой в катушку зажигания энергии . И все-таки при большей длительности искры достгается лучшее дожигание горючей смеси в цилиндрах двигателя, т.е. повышается его КПД.
При нормальной работе блока формированию каждой искры соответствуют 4,5 периода колебаний в катушке зажигания. Это означает, что искра представляет собой девять знакопеременных разрядов в свече зажигания, непрерывно следующих один за другим.
Нельзя поэтому согласиться с, мнением (изложенным в) о том, что вклад третьего и тем более четвертого периодов колебаний не удается обнаружить ни при каких условиях. На самом деле каждый период вносит свой совершенно конкретный и ощутимый вклад в общую энергию искры, что подтверждают и другие публикации, например . Однако, если источник бортового напряжения включен последовательно с элементами контура (т.е. последовательно с катушкой зажигания и накопителем), сильное затухание, вносимое именно источником, а не другими элементами, действительно, не позволяет обнаружить упомянутый выше вклад. Такое включение как раз и использовано в .
В описываемом блоке источник бортового напряжения в колебательном процессе участия не принимает и упомянутых потерь, естественно, не вносит.
Один из наиболее ответственных узлов блока - трансформатор Т1. Его магнитопровод Ш15х12 изготовлен из оксифера НМ2000. Обмотка I содержит 52 витка провода ПЭВ-2 0,8; II - 90 витков провода ПЭВ-2 0,25; III - 450 витков провода ПЭВ-2 0.25.
Зазор между Ш-образными частями магнитопровода должен быть выдержан с максимально возможной точностью. Для этого при сборке между его крайними стержнями помещают, без клея по гетинаксовой (или текстолитовой) прокладке толщиной 1,2+-0,05 мм, после чего детали магнитопровода стягивают прочными нитками.
Снаружи трансформатор необходимо покрыть несколькими слоями эпоксидной смолы, нитроклея или нитроэмали.
Катушку можно выполнить на прямоугольной шпуле без щек. Первой наматывают обмотку III, в которой каждый слой отделяют от следующего тонкой изоляционной прокладкой, а завершают трехслойной прокладкой. Далее наматывают обмотку II. Обмотку I отделяют от предыдущей двумя слоями изоляции. Крайние витки каждого слоя при намотке на шпуле следует фиксировать любым нитроклеем.
Гибкие выводы катушки лучше всего оформить по окончании всей намотки. Выводить концы обмотки I и II следует в сторону диаметрально противоположную концам обмотки III, но все выводы должны быть на одном из торцов катушки. В таком же порядке располагают и гибкие выводы, которые закрепляют нитками и клеем на прокладке из электрокартона (прессшпана). Перед заливкой выводы маркируют.
Кроме КУ202Н, в блоке можно применить тринистор КУ221 с буквенными индексами А-Г. При выборе тринистора следует принять во внимание, что, как показывает опыт, КУ202Н по сравнению с КУ221 имеют в большинстве случаев меньший ток открывания, но более критичны к параметрам импульса запуска (длительности и частоте). Поэтому для случая использования тринистора из серии КУ221 номиналы элементов цепи удлинения искры необходимо скорректировать - конденсатор С3 должен иметь емкость 0,25 мкФ, а резистор R4 - сопротивление 620 Ом.
Транзистор КТ837 может быть с любыми буквенными индексами, кроме Ж, И, К, Т, У, Ф. Желательно, чтобы статический коэффициент передачи тока не был менее 40. Применение транзистора другого типа нежелательно. Теплоотвод транзистора должен иметь полезную площадь не менее 250 кв.см. В роли теплоотвода удобно использовать металлический кожух блока или его основание, которые следует дополнить охлаждающими ребрами. Кожух должен обеспечивать и брызгозащищенность блока.
Стабилитрон VD3 также необходимо устанавливать на теплоотвод. В блоке он представляет собой две полосы размерами 60x25x2 мм, согнутые П-образно и вложенные одна в другую. Стабилитрон Д817Б можно заменить последовательной цепью из двух стабилитронов Д816В; при бортовом напряжении 14 В и частоте искрообразования 20 Гц эта пара должна обеспечивать на накопители напряжение 350...360В. Каждый из них устанавливают на небольшой теплоотвод. Стабилитроны подбирают только после выбора и установки тринистора.
Стабилитрон VD1 подборки не требует, но он обязательно должен быть в металлическом корпусе. Для увеличения общей надежности блока целесообразно этот стабилитрон снабдить небольшим теплоотводом в виде обжимки из полоски тонкого дюралюминия.
Стабистор КС119А (VD2) можно заменить тремя диодами Д223А (или другими кремниевыми диодами с импульсным прямым током не менее 0,5 А), включенными последовательно.
Большинство деталей блока смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Плата разработана с учетом возможности монтажа деталей при различных вариантах замены.



Для блока, предназначенного работать в местностях с суровым зимним климатом, оксидный конденсатор С1 желательно использовать танталовый с рабочим напряжением не ниже 10 В. Его устанавливают вместо большой перемычки на плате, при этом точки подключения алюминиевого оксидного конденсатора (он-то и показан на плате), пригодного для работы в подавляющем большинстве климатических зон, следует замкнуть перемычкой соответствующей длины. Конденсатор С2-МБГО, МБГЧ или К73-17 на напряжение 400...600 В.
В случае выбора для блока тринистора из серии КУ221 нижнюю по рис.2 часть платы необходимо скорректировать так, как это показано на рис.3. При монтаже тринистора необходимо один из винтов его крепления изолировать от печатной дорожки общего провода.
Проверку работоспособности и тем более регулировку следует проводить именно с такой катушкой зажигания, с которой блок будет работать в дальнейшем. Следует иметь в виду, что включение блока без катушки зажигания, нагруженной запальной свечой, совершенно недопустимо. Для проверки вполне достаточно измерять пиковым вольтметром напряжение на накопительном конденсаторе С2. Таким вольтметром может служить авометр, имеющий предел постоянного напряжения 500 В. Авометр подключают к конденсатору С2 через диод Д226Б (или подобный), а зажимы авометра шунтируют конденсатором емкостью 0,1...0,5мкф, на напряжение 400...600 В.
При номинальном напряжении питания (14 В) и частоте искрообразования 20 Гц напряжение на накопителе должно находиться в пределах 345...365 В. Если напряжение меньше, то прежде всего подбирают тринистор с учетом сказанного выше. Если после подборки будет обеспечено искрообразоеание при понижении напряжения питания до 3 В, но на конденсаторе С2 при номинальном напряжении питания будет повышенное напряжение, следует подобрать стабилитрон VD3 с несколько пониженным напряжением стабилизации.
Далее проверяют блок на высшей частоте искрообраэования (200 Гц), поддерживая номинальное бортовое напряжение. Напряжение на конденсаторе С2 должно находиться в пределах 185...200 В, а потребляемый блоком ток после непрерывной работы в течение 15...20 мин не должен превышать 2,2 А. Если транзистор за это время нагреется выше 60°С при комнатной окружающей температуре, тёплоотводящую поверхность следует несколько увеличить. Конденсатор С3 и резистор R4 подборки, как правило, не требуют. Однако для отдельных экземпляров тринисторов (как того, так и другого типа) может потребоваться корректировка номиналов, если на частоте 200 Гц будет обнаружена неустойчивость в искрообраэовании. Она проявляется обычно в виде кратковременного сбоя в показаниях вольтметра, подключенного к накопителю, и хорошо заметна на слух.
В этом случае следует увеличить емкость конденсатора С3 на 0,1...0,2 мкФ, а если это не поможет, вернуться к прежнему значению и увеличить сопротивление резистора R4 на 100...200 Ом. Одна из этих мер, а иногда и обе вместе, обычно устраняют неустойчивость запуска. Заметим, что увеличение сопротивления уменьшает, а увеличение емкости увеличивает длительность искры.
Если есть возможность воспользоваться осциллографом, то полезно убедиться в нормальном течении колебательного процесса в катушке зажигания и фактической его длительности. До полного затухания должны быть хорошо, различимы 9-11 полуволн, суммарная длительность которых должна быть равна 1,3...1,5 мс на любой частоте искрообразования. Вход X осциллографа следует подключать к общей точке обмоток катушки зажигания.
Типичный вид осциллограммы показан на рис.4. Всплески посредине минусовых полуволн соответствуют единичным импульсам блокинг-генератора при изменении направления тока в катушке зажигания.
Целесообразно проверить также зависимость напряжения на накопительном конденсаторе от бортового напряжения. Ее вид не должен заметно отличаться от показанного на рис.5.
Изготовленный блок рекомендуется устанавливать в моторном отсеке в передней, более прохладной его части. Искрогасящий конденсатор прерывателя следует отключить и соединить его вывод с соответствующим контактом розетки разъема Х1. Переход на классическое зажигание выполняют, как и в прежней конструкции, установкой вставки-замыкателя Х1.3.
В заключение отметим, что попытки получить столь же "длинную" искру с трансформатором на стальном магнитопроводе, даже из стали самого высокого качества, не приведут к успеху. Наибольшая длительность, которая может быть достигнута, - 0,8...0,85 мс. Тем не менее блок почти без изменений (сопротивление резистора R1 следует уменьшить до 6...8 Ом) работоспособен и с трансформатором на стальном магнитопроводе с указанными намоточными характеристиками, и эксплуатационный качества блока выше, чем у его прототипа .

Автолюбители изготавливают электронные блоки зажигания, как правило, по классической схеме, состоящей из источника высокого напряжения, накопительного конденсатора и тиристорного ключа. Однако такие устройства имеют ряд существенных недостатков. Первый из них - низкий КПД. Поскольку заряд накопительной емкости можно уподобить заряду конденсатора через резистор, КПД зарядной цепи не превышает 50%. Значит, примерно половина потребляемой преобразователем мощности будет выделяться в виде тепла на транзисторах. Поэтому для них нужны дополнительные теплоотводы.

Второй недостаток состоит в том, что во время разряда конденсатора тиристор закорачивает выход преобразователя и вырабатываемые им колебания срываются.

После разряда накопительной емкости тиристор закрывается, и конденсатор вновь начинает заряжаться плавно нарастающим, от нуля до максимального значения, напряжением с Преобразователя. При больших оборотах двигателя это напряжение может не достичь номинального значения и конденсатор зарядится не полностью. Это приводит к тому, что с увеличением числа оборотов уменьшается энергия искры.

Следующий недостаток объясняется отсутствием стабильности энергии искрообразования при изменении напряжения питания. При запуске двигателя с помощью стартера напряжение аккумуляторной батареи может значительно (до 9-8 В) снижаться. В этом случае блок зажигания выдает слабую искру либо не работает совсем.

Предлагаем описание электронного зажигания, в котором нет указанных недостатков. Работа устройства основана на принципе заряда накопительного конденсатора от стабильного по амплитуде обратного выброса ждущего блокинг-генератора. Величина этого выброса мало зависит от напряжения бортовой сети автомобиля и числа оборотов коленчатого вала двигателя, и, следовательно, энергия искры практически всегда постоянна.

Устройство обеспечивает уровень потенциала на накопительном конденсаторе в пределах 300 ± 30 В при изменении напряжения на аккумуляторной батарее от 7 до 15 В, сохраняя работоспособность в интервале температур -15 - +90°. Предельная частота срабатывания составляет 300 имп/с. Потребляемый ток при f = 200 имп/с не превышает 2 А.

Принципиальная схема электронного зажигания (рис. 1) состоит из ждущего блокинг-генератора на транзисторе V6, трансформатора Т1, цепи формирования запускающих импульсов C3R5, накопительного конденсатора С1, генератора импульсов зажигания на тиристоре V2.

В исходном состоянии, когда контактные пластины прерывателя S1 замкнуты, транзистор V6 закрыт, а конденсатор С3 разряжен. При размыкании контакта он будет заряжаться по цепи R5, RЗ, переход «база - эмиттер» V6. Импульс зарядного тока запускает блокинг-генератор. Передний фронт импульса с обмотки II трансформатора (нижний по схеме вывод) запускает тиристор V2, но, поскольку конденсатор С1 предварительно не был заряжен, на выходе устройства искры не будет.

После того как под действием коллекторного тока V6 произойдет насыщение сердечника трансформатора, блокинг-генератор вновь вернется в ждущий режим. Образующийся при этом выброс напряжения на коллекторе V6, трансформируясь в обмотке III, через диод V3 зарядит конденсатор С1.

При повторном размыкании прерывателя в устройстве произойдут те же процессы с той лишь разницей, что открывшийся передним фронтом импульса тиристор V2 подключит теперь уже заряженный конденсатор к первичной обмотке катушки зажигания. Ток разряда С1 индуцирует во вторичной обмотке бобины высоковольтный импульс.

Устройство нечувствительно к дребезжанию контактных пластин прерывателя. При первом же их размыкании транзистор V6 откроется и останется в этом состоянии до начала насыщения трансформатора независимо от дальнейшего положения прерывателя.

Трансформатор Т1 выполнен на магнитопроводе ШЛ16Х25 с зазором около 50 мк. Обмотка I содержит 60 витков провода ПЭВ-2 1,2, II-60 витков ПЭВ-2 0,31, III - 360 витков ПЭВ-2 0,31. Сердечник трансформатора можно набрать и из Ш-образного железа. Однако из-за неровной обрезки пластин зазор, даже без прокладки, может оказаться большим. В этом случае необходима шлифовка неровностей в местах стыка магнитопровода.

Транзистор КТ805А можно заменить на КТ805Б, но из-за более высокого значения напряжения насыщения на нем будет рассеиваться и несколько большая мощность, что может привести к самозапуску блокинг-генератора при высоких температурах. Поэтому транзистор КТ805Б желательно установить на дополнительном теплоотводе площадью 20 - 30 см 2 .

Вместо диодов Д226Б можно применить КД105Б - КД105Г, КД202К - КД202Н (V1, V3), Д223 (V4).

С1 составлен из двух параллельно соединенных конденсаторов МБГО-1 по 0,5 мкФ на напряжение 500 В. С2 и С3 - МБМ.

Тиристор КУ202Н допустимо заменить на КУ202М или КУ201И, КУ201Л. Поскольку у КУ201 прямое напряжение не превышает 300 В, поэтому напряжение на накопительном конденсаторе снижают до 210 - 230 В путем увеличения его емкости до 2 мкФ. Причем заметного влияния на энергию искры это не оказывает.

Для налаживания устройства нужны авометр и имитатор прерывателя - любое электромагнитное реле, питаемое от звукового – генератора. Реле можно подключить через понижающий трансформатор к осветительной сети. Частота запускающих импульсов будет тогда равна 100 имп/с. С последовательно соединенным диодом частота запуска составит 50 имп/с.

Если детали исправны и выводы трансформатора подсоединены правильно, устройство начинает сразу же работать. Проверяют, чтобы напряжение на конденсаторе С1 составляло 300±30 В при изменении величины питания в указанных выше пределах. Измерять напряжение следует пиковым вольтметром, воспользовавшись схемой, представленной на рисунке 2.

Прибор подключают в точке соединения элементов C1, V2, VЗ и, изменяя величину зазора в сердечнике трансформатора, добиваются необходимого значения напряжения. Если оно заниженное, толщину прокладки увеличивают. При уменьшении зазора напряжение должно падать.

Когда окружающая температура низкая, энергия искры может упасть. В этом случае нужно уменьшить номинал резистора RЗ, поскольку при малом питающем напряжении тиристор V2 может не открыться.

Монтаж устройства выполнен печатным методом на плате размером 95X35 мм, изготовленной из фольгированного гетинакса или стеклотекстолита (рис. 3). Конструктивное выполнение блока электронного зажигания самое различное - в зависимости от имеющегося материала и места установки устройства.

В. БАКОМЧЕВ, г. Бугульма

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Многолетняя эксплуатация на отечественных и зарубежных автомобилях электронных блоков зажигания, собранных по статье Ю. Сверчкова усовершенствованиями, предложенными Г. Карасевым , показала, что эти усовершенствования вместе с положительными качествами (увеличение длительности искры, например) приводят к появлению сбоев в искрообразовании на частоте вращения коленчатого вала 3000 мин-1 и более. Более того, оказалось, что полностью устранить эти сбои исключительно трудно, даже если точно следовать рекомендациям, данным в .

На стадии налаживания блока было установлено, что появление на зажиме "К" катушки зажигания полуволны напряжения после закрывания диода VD5 (обозначения элементов здесь и далее соответствуют схеме на рис. 1 в ) крайне нестабильно. Характеристики этой полуволны сильно зависят не только от номиналов конденсатора С2 и резистора R4, но и от напряжения питания, и в еще большей степени от ширины искрового промежутка.

После установки на автомобиль блока, отрегулированного и работающего на стенде без сбоев в интервале частоты формирователя импульсов 10...200 Гц с двумя периодами разрядки конденсатора C3 при напряжении питания 14 В, искровом промежутке 7 мм, сбои в искрообразовании проявлялись на высоких оборотах коленчатого вала. Не помогало ни различное сочетание значений емкости конденсатора С2 (от 0,01 до 0,047 мкФ) и сопротивления резистора R4 (от 300 до 1500 Ом), ни даже подборка тринистора VS1 по току управления.

Сбои полностью исчезали при номинале резистора R4 свыше 1,5 кОм и конденсатора С2 0,01 мкФ, т. е. при однопериодном искрообразовании в соответствии со схемой блока Ю. Сверчкова. Несколько лет блок безотказно работал с удаленной цепью удлинения искры C2R3R4VD6.

Анализ осциллограмм напряжения на зажиме "К" катушки зажигания, полученных на установленном в автомобиль блоке зажигания с цепью удлинения искры, при различной частоте искрообразования, приводит к выводу, что причина появления сбоев в искрообразовании кроется в нестабильности скорости нарастания полуволны напряжения на конденсаторе C3, следующей за закрыванием диода VD5.

Поэтому приходится признать, что метод увеличения длительности искрового разряда тринисторно-конденсаторным блоком путем подачи на управляющий электрод тринистора повторного открывающего импульса, формируемого остаточным напряжением на накопительном конденсаторе, для практического использования в автомобиле непригоден.

Реализовать на практике идею увеличения длительности искрового разряда в конденсаторном блоке зажигания удалось благодаря использованию вместо тринистора мощного составного транзистора КТ898А, специально разработанного для автомобильных систем зажигания. Схема модернизированного блока показана здесь на рис.1 (далее обозначения элементов соответствуют этой схеме).

Цепь управления разрядкой накопительного конденсатора С2 существенно упрощена по сравнению с . Постоянную времени зарядки управляющего конденсатора C3 определяют номиналы элементов C3 и R3 и сопротивление диода VD7, а разрядки - C3 и R4, VD6 и сопротивление эмиттерного перехода транзистора VT2.

Ток базы транзистора VT2 зависит от напряжения на конденсаторе C3, сопротивления диода VD6, резистора R4 и напряжения питания, что позволяет наладить блок в стендовых условиях.

Для налаживания подключают блок к регулируемому источнику питания напряжением до 15 В и с током нагрузки 3...5 А и к катушке зажигания, устанавливают искровой промежуток 7 мм между ее центральным выводом и зажимом "Б". К контакту 6 разъема X1.1 подключают выход формирователя прямоугольных импульсов скважностью 3 и нагрузочной способностью не менее 0,5 А.

Очень удобно для налаживания воспользоваться октан-корректором со вспомогательными устройствами (надо только замкнуть переменный резистор R6 по рис. 1 в . В налаживаемом блоке вместо постоянного резистора R3 подключают переменный номиналом 2,2 кОм, установив его движок в положение максимального сопротивления. Включают источник питания на напряжение 14 В и подают на вход управляющие импульсы частотой от 10 до 200 Гц, контролируя осциллографом форму напряжения на зажиме "К" катушки зажигания - она должна соответствовать показанной на рис. 2.

Если на осциллограмме виден только один период колебания напряжения, вращением движка переменного резистора добиваются появления второго периода с обязательной видимой четкой границей окончания искрообразования. Затем уменьшают напряжение питания до 12 В и повторяют предыдущую операцию. После этого проводят контрольную проверку работы на частоте 10...200 Гц при напряжении питания 12...14 В. Измеряют сопротивление введенной части переменного резистора и впаивают постоянный резистор ближайшего номинала Обычно сопротивление R3 находится в пределах от 200 до 680 Ом. В отдельных случаях может потребоваться подобрать конденсатор C3 в пределах 1 ...3,3 мкФ.

Уменьшение постоянной времени зарядки конденсатора C3 из-за резистора R3 не ухудшает защищенности блока от импульсов "дребезга" контактов прерывателя, так как процесс "дребезга" короче времени, в течение которого ток базы транзистора VT2 достигнет значения, достаточного для его открывания. При использовании блока совместно с октан-корректором помехи, связанные с "дребезгом", подавляются еще более надежно.

Емкость накопительного конденсатора С2 блока зажигания увеличена до 2 мкФ с целью увеличения времени его разрядки. В этом случае длительность первого периода разрядки равна 0,4 мс. Для того чтобы конденсатор успевал заряжаться до возникновения очередного цикла искрообразования, преобразователь в блоке необходимо форсировать, увеличив толщину набора пластин трансформатора Т1 до 8 мм, а при налаживании блока по методике Ю. Сверчкова подборкой резистора R1 добиться напряжения 150... 160 В на конденсаторе С2 (конденсатор при этом необходимо зашунтировать резистором сопротивлением 1,5 кОм мощностью не менее 5 Вт). В таком варианте исполнения преобразователь в блоке продолжает надежно работать в течение уже более 6 лет.

Диод VD5 по схеме рис. 1 в из блока исключен; его функцию выполняет встроенный защитный диод транзистора VT2 блока. Конденсатор С2 - МБГО, C3 - К53-1 или К53-4, К53-14, К53-18; применять алюминиевые конденсаторы из-за большого тока утечки и невысокой надежности нельзя. Транзистор КТ898А можно заменять только на КТ897А, КТ898А1 или на зарубежные BU931Z, BU931ZR BU931ZPF1, BU941ZPF1. Разъем Х1 состоит из вставки ОНП-ЗГ-52-В-АЭ и розетки ОНП-ЗГ-52-Р-АЭ.

Описываемый блок можно применять в автомобилях семейств ВАЗ-2108 и ВАЗ-2109, для чего потребуется подключить к блоку левее разъема Х1.1 по схеме рис. 1 согласующий узел, собранный по схеме на рис. 3 (крестом отмечено место разрыва цепи). Если же предполагается совместно с блоком зажигания использовать октан-корректор , из согласующего узла следует исключить резисторы R1, R4 и конденсаторы С1, С2, замкнуть резистор R2 и диод VD1 и соединить выход октан-корректора (резистор R7) с базой транзистора VT1 узла. Стабилитрон Д816А надо заменить на Д815В, плюсовой провод питания корректора подключить к контакту 5 разъема Х1.1. Конденсаторы в узле С1 - КМ-5 (КМ-6, К10-7, К10-17), С2 - К73-9(К73-11).

При использовании блока на автомобилях других типов, имеющих контактный прерыватель, для питания октан-корректора следует установить параметрический стабилизатор напряжения, рис. 4.

Вывод конденсатора прерывателя Спр отключают и припаивают его к контакту 7 розетки Х1.2. Теперь для перехода на обычное зажигание достаточно вставить в розетку Х1.2 вилку-заглушку Х1.3, у которой соединены вместе контакты 1,6,7 (на схеме рис. 1 она не показана). Чтобы не выводить провод от конденсатора прерывателя Спр к розетке Х1.2 в вилке Х1.3, можно предусмотреть конденсатор С4 К73-11 емкостью 0,22 мкФ на напряжение 400 В, подключив его между контактами 1, 6, 7 и контактом 2. В этом случае конденсатор Спр просто демонтируют.

После проведения указанной модернизации блок обеспечивает бесперебойное искрообразование с двумя периодами общей длительностью искры не менее 0,8 мс при частоте вращения коленчатого вала двигателя от 30 до 6000 мин-1 и изменении напряжения бортовой сети автомобиля от 12 до 14 В. Двигатель стал работать "мягче", улучшилась динамика автомобиля.

При снижении напряжения питания до 6 В блок сохраняет бесперебойное искрообразование с одним периодом в указанных пределах частоты вращения коленчатого вала, причем двупериодное искрообразование сохраняется до частоты вращения 1500 мин-1 при уменьшении бортового напряжения до 8 В, что существенно облегчает запуск двигателя.

Применение в блоке коммутирующего транзистора вместо тринистора позволяет также повысить энергию искры за счет практически полной разрядки накопительного конденсатора через первичную обмотку катушки зажигания, как в конденсаторных блоках зажигания с импульсным накоплением энергии. Этот вариант работы стал возможным благодаря тому, что блок Ю. Сверчкова не боится замыкания накопительного конденсатора С2. Реализация указанного качества достигнута включением диода VD8 параллельно первичной обмотке катушки зажигания (на схеме блока он показан штриховыми линиями).

Процесс разрядки накопительного конденсатора для блока зажигания с непрерывным накоплением энергии в конденсаторе несколько необычен. При замыкании контактов прерывателя заряжается управляющий конденсатор C3, и в момент их размыкания он оказывается подключенным плюсовой обкладкой через диод VD6 к базе транзистора VT2, а минусом через резистор R4 - к эмиттеру. Транзистор VT2 открывается и остается открытым до тех пор, пока ток его базы - ток разрядки конденсатора C3 - остается для этого достаточным.

Накопительный конденсатор С2 подключен через транзистор VT2 к первичной обмотке катушки зажигания и разряжается в течение первой четверти периода так же, как в блоке . Когда напряжение на зажиме "К" катушки перейдет через нулевое значение, диод VD8 открывается. Ток в цепи в этот момент достигает максимума. Открытый диод VD8 шунтирует конденсатор С2, соединенный через открытый транзистор VT2 с обмоткой I катушки, и, следовательно, перезарядки конденсатора не происходит, он разряжается полностью на обмотку I катушки зажигания и вся его энергия переходит в ее магнитное поле.

Открытый диод VD8 поддерживает ток в контуре, образованном им и обмоткой I, и возникший в течение первой четверти периода искровой разряд. После того как вся запасенная энергия катушки будет израсходована, искровой разряд прекращается. Следует отметить, что в этом случае, в отличие от случая колебательного процесса разрядки конденсатора С2, длительность разрядки не зависит от состояния транзистора VT2 и определяется только емкостью конденсатора С2 и характеристиками катушки зажигания.

Таким образом, транзистор VT2 может закрыться до или после окончания искрового разряда, что снижает требования к точности регулировки блока. Достаточно наладить его на стенде для случая колебательного процесса, а затем просто припаять диод VD8. Это свойство блока делает его универсальным. Например, если требуется повышенный ресурс свечей зажигания, блок используют в колебательном режиме, длительность искрового разряда 0,8 мс, уверенный запуск двигателя в любых условиях. А когда требуется высокая энергия искры (повышенные требования к уровню токсичности выхлопных газов), блок используют с токовым процессом разрядки, установив диод VD8. Искровой разряд во время испытаний блока с диодом имеет вид шнура сине-малинового цвета, как у транзисторных систем.

Для модернизации уже изготовленных блоков никаких существенных переделок не требуется. Транзистор КТ898А и диод КД226В свободно размещаются на существующей плате вместо тринистора VS1 и цепи удлинения искры C2R3R4VD6. Теплоотвод транзистору совершенно не нужен, поскольку длительность протекающего через него импульса тока несоизмеримо меньше, чем в транзисторных системах.

После модернизации значительно увеличивается импульсный ток, потребляемый блоком зажигания при работе двигателя (при остановленном двигателе ток остался прежним - 0,3...0,4 А). Поэтому целесообразно между контактом 4 разъема Х1 и общим проводом подключить оксидный блокирующий конденсатор емкостью 22 000 мкФ на напряжение не менее 25 В.

Разумеется, описанной модернизацией блока не исчерпываются возможности дальнейшего наращивания длительности и энергии искрового разряда. Так, например, был опробован способ подключения первичной обмотки катушки зажигания к источнику питания в момент окончания цикла искрообразования. И хотя такой блок получается более сложным и, соответственно, менее надежным, в целом по этим показателям он превосходит многие другие, описанные в журнале.

Фрагмент схемы усовершенствованного варианта изображен на схеме рис. 5 (преобразователь по-прежнему остается неизменным).

После размыкания контактов прерывателя процессы, протекающие в блоке в первую четверть периода разрядки накопительного конденсатора С2, аналогичны описанным выше (фаза 1 на рис. 6), однако, кроме этого, происходит зарядка конденсатора С4 через резисторы R4, R5, эмиттерный переход транзистора VT3. Зарядный ток этого конденсатора открывает транзистор VT3 и удерживает его в этом состоянии в течение времени, определяемом параметрами элементов зарядной цепи.

После того как напряжение на зажиме "К" катушки зажигания перейдет через нулевое значение в конце первой четверти периода и превысит прямое напряжение диода VD9, он откроется и зажим "К" через диод VD9 и транзистор VT3 будет подключен к общему проводу. Через первичную обмотку катушки зажигания потечет ток от источника питания, суммируясь с током разрядки конденсатора С2 и поддерживая возникший искровой разряд (фаза 2).

Далее ток базы транзистора VT3 становится столь малым, что транзистор закрывается, отключая первичную обмотку катушки зажигания. Возникающий при этом всплеск напряжения на зажиме "К" - около 200 В (фаза 3 на рис.) - оказывается достаточным для повторного пробоя искрового промежутка, так как к этому моменту искровой разряд фактически еще не был закончен и повторный пробой происходит в подготовленной среде. Далее разряд протекает, как в транзисторной системе (фаза 4 на рис. 6).

После замыкания контактов прерывателя конденсатор С4 быстро разряжается через резистор R5 и диод VD10, подготавливаясь к очередному циклу искрообразования.

Суммарная длительность искрового разряда в усовершенствованном блоке равна 2 мс и остается практически постоянной в интервале частоты формирователя импульсов от 10 до 200 Гц при напряжении питания 14 В.

Налаживание этого блока сложности не представляет. Сначала налаживают его с отключенным транзистором VT3 так же, как описано выше. Затем подключают транзистор VT3, вместо постоянного резистора R5 подключают переменный сопротивлением 2,2 кОм и устанавливают его движок в положение наибольшего сопротивления.

Включают источник питания и устанавливают напряжение 14 В. Вращением движка переменного резистора добиваются, чтобы форма напряжения на зажиме "К" катушки зажигания соответствовала показанной на рис. 6 в интервале частоты формирователя импульсов от 10 до 200 Гц, после чего вместо переменного резистора впаивают постоянный соответствующего сопротивления (обычно - от 430 до 1000 Ом).

Испытания были проведены с катушкой зажигания Б115 для контактной системы автомобиля ГАЗ-24 при замкнутом добавочном резисторе. Замыкания этого резистора можно не опасаться - катушка не перегреется, так как время искрового разряда, формируемого блоком в каждом цикле, меньше времени нахождения катушки подтоком при замкнутых контактах прерывателя в обычной системе зажигания. В случае применения других катушек зажигания оптимальную емкость конденсаторов C3 и С4 может потребоваться уточнить экспериментально.

Эффективность работы узла на транзисторе VT3 оценивают, отключив после налаживания конденсатор С4. Устанавливают частоту искрообразования 200 Гц и касаются выводом конденсатора С4 в месте его отключения - звук искрового разряда должен изменяться, а шнур искры - становиться немного толще, с образованием вокруг него светлого облачка ионизированного газа, как у искрового разряда, формируемого транзисторными системами. Опасности повреждения транзистора VT3 при этом нет.

Транзистор VT3 необходимо установить на корпус блока, смазав прилегающую к нему поверхность пастой КПТ-8 или смазкой Литол-24. Если вместо КТ898А1 (или BU931ZPF1) использован другой транзистор, под него придется подложить изолирующую слюдяную прокладку.

Чертеж печатной платы блока по схеме рис. 1 представлен на рис. 7.

Плата разработана таким образом, чтобы максимально облегчить сборку любого описанного в статье варианта блока зажигания. Резистор R1 для удобства налаживания составлен из двух - R1.1 и R1.2. Вместо диодов Д220 можно использовать КД521А, КД521В, КД522Б; вместо Д237В подойдут КД209А-КД209В, КД221В, КД221Г, КД226В-КД226Д, КД275Г, а вместо КД226В (VD8) - КД226Г, КД226Д, КД275Г. Для октан-корректора надо предусмотреть отдельную плату.

Трансформатор Т1 собран на магнитопроводе Ш16х8. Пластины собраны встык, в зазор вложена полоска стеклотекстолита толщиной 0,2 мм. Обмотка I содержит 50 витков провода ПЭВ-2 0,55 (можно толще - до 0,8), обмотка II - 70 витков провода ПЭВ-2 диаметром от 0,25 до 0,35 мм, обмотка III - 420-450 витков провода ПЭВ-2 диаметром от 0,14 до 0,25 мм.

Фото одного из вариантов блока зажигания (без кожуха) показано на рис. 8.

Литература

  1. Сверчков Ю. Стабилизированный многоискровой блок зажигания. - Радио, 1982, № 5, с. 27-30.
  2. Карасев Г. Стабилизированный блок электронного зажигания. - Радио, 1988, № 9, с. 17, 18.
  3. На вопросы читателей отвечают авторы статей и консультанты. - Радио, 1993, № 6, с. 44,45 (Г.Карасев. Стабилизированный блок электронного зажигания. - Радио, 1988, № 9, с. 17,18; 1989, № 5, с. 91; 1990, № 1.С.77).
  4. Сидорчук В. Электронный октан-корректор. - Радио, 1991, № 11, с. 25. 26.
  5. Адигамов Э Доработанный электронный октан-корректор. - Радио, 1994, № 10, с. 30,31.

Читайте и пишите полезные

Представленная ниже, схема зажигания автомобиля предназначена для опытных радиолюбителей.

Тем, кто ранее собирал простые схемы блоков зажигания и желающим собрать устройство, из которого, максимально «выжато» все или может почти всё!

За истекшие годы стабилизированный блок зажигания повторили очень многие авто- и радиолюбители, и несмотря на выявленные недостатки можно считать что он проверку временем выдержал. Существенно также, что в литературе пока не появились публикации сходных по простоте конструкций с аналогичными параметрами.
Эти обстоятельства и побудили автора сделать ещё одну попытку основательно улучшить показатели блока, сохранив его простоту.

Основное отличие усовершенствованного блока зажигания от — заметное улучшение его энергетических характеристик. Если у исходного блока максимальная длительность искры не превышала 1,2 мс, причем она могла быть получена лишь на самых низких значениях частоты искрообразования, то у нового длительность искры постоянна во всей рабочей полосе 5…200 Гц и равна 1,2… 1,4 мс. Это значит, что на средних и максимальных оборотах двигателя — а это наиболее часто используемые режимы, длительность искры практически соответствует установившимся и настоящее время требованиям.

Ощутимо изменилась и мощность, подводимая к катушке зажигания. На частоте 20 Гц при катушке Б-115 она достигает 50…52 мДж, а на 200 Гц — около 16 мДж. Расширены также пределы питающего напряжения, в которых блок работоспособен. Уверенное искрообразование при пуске двигателя обеспечивается при бортовом напряжении 3,5 В, но работоспособность блока сохраняется и при 2,5 В. На максимальной частоте искрообразование не нарушается, если питающее напряжение достигает 6 В, а длительность искры — не ниже 0,5 мс.

Указанные результаты получены главным образом за счет изменения режима работы преобразователя, особенно условий его возбуждения. Эти показатели, которые, по мнению автора, находятся на практическом пределе возможностей при использовании всего одного транзистора, обеспечены также применением ферритового магнитопровода в трансформаторе преобразователя.

Как видно из принципиальной схемы блока, показанной на рисунке выше, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора. Функции пускового и разрядного диодов(соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает более надежный запуск генератора после каждого цикла искрообразования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1. Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.

Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и VD3. Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки и трансформатора. Средний уровень напряжения на накопительном конденсаторе уменьшен до 345…365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.

В разрядной цепи конденсатора С1 использован стабистор VD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода. При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении, (подобно диоду VD9 исходного блока). Конденсатор С3 обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1. Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.

В блоках электронного зажигания с многократной разрядкой накопительного конденсатора на катушку зажигания длительность искры и в определенной степени ее мощность определяет качество тринистора, поскольку все периоды колебаний, кроме первого, создаются и поддерживаются только энергией накопителя. Чем меньше затраты энергии на каждое включение тринистора, тем большее число запусков будет возможно и тем большее количество энергий (и за большее время) будет передано катушке зажигания. Крайне желательно поэтому подобрать тринистор с минимальным открывающим током.
Хорошим можно считать тринистор, если блок обеспечивает начало искрообразования (с частотой 1…2 Гц) при питании блока напряжением 3 В. Удовлетворительному качеству соответствует работа при напряжении 4…5 В. С хорошим тринистором длительность искры равна 1,3…1,5 мс, при плохом — уменьшается до 1… 1,2 мс.


При этом, как это ни покажется странным, мощность искры в обоих случаях будет примерно одинаковой по причине ограниченной мощности преобразователя. В случае большей длительности конденсатор-накопитель разряжается практически полностью, начальный (он же средний) уровень напряжения на конденсаторе, задаваемый преобразователем, несколько ниже, чем в случае с меньшей длительностью. При меньшей же длительности начальный уровень более высок, но высок и остаточный уровень напряжения на конденсаторе из-за его неполной разрядки.

Таким образом, разность между начальным и конечным уровнями напряжения на накопителе в обоих случаях практически одинакова, а от нее и зависит количество вводимой в катушку зажигания энергии . И все-таки при большей длительности искры достгается лучшее дожигание горючей смеси в цилиндрах двигателя, т.е. повышается его КПД.

При нормальной работе блока формированию каждой искры соответствуют 4,5 периода колебаний в катушке зажигания. Это означает, что искра представляет собой девять знакопеременных разрядов в свече зажигания, непрерывно следующих один за другим.

Нельзя поэтому согласиться с, мнением (изложенным в) о том, что вклад третьего и тем более четвертого периодов колебаний не удается обнаружить ни при каких условиях. На самом деле каждый период вносит свой совершенно конкретный и ощутимый вклад в общую энергию искры, что подтверждают и другие публикации, например . Однако, если источник бортового напряжения включен последовательно с элементами контура (т.е. последовательно с катушкой зажигания и накопителем), сильное затухание, вносимое именно источником, а не другими элементами, действительно, не позволяет обнаружить упомянутый выше вклад. Такое включение как раз и использовано в .

В описываемом блоке источник бортового напряжения в колебательном процессе участия не принимает и упомянутых потерь, естественно, не вносит.

Один из наиболее ответственных узлов блока — трансформатор Т1. Его магнитопровод Ш15х12 изготовлен из оксифера НМ2000. Обмотка I содержит 52 витка провода ПЭВ-2 0,8; II — 90 витков провода ПЭВ-2 0,25; III — 450 витков провода ПЭВ-2 0.25.

Зазор между Ш-образными частями магнитопровода должен быть выдержан с максимально возможной точностью. Для этого при сборке между его крайними стержнями помещают, без клея по гетинаксовой (или текстолитовой) прокладке толщиной 1,2+-0,05 мм, после чего детали магнитопровода стягивают прочными нитками.
Снаружи трансформатор необходимо покрыть несколькими слоями эпоксидной смолы, нитроклея или нитроэмали.
Катушку можно выполнить на прямоугольной шпуле без щек. Первой наматывают обмотку III, в которой каждый слой отделяют от следующего тонкой изоляционной прокладкой, а завершают трехслойной прокладкой. Далее наматывают обмотку II. Обмотку I отделяют от предыдущей двумя слоями изоляции. Крайние витки каждого слоя при намотке на шпуле следует фиксировать любым нитроклеем.

Гибкие выводы катушки лучше всего оформить по окончании всей намотки. Выводить концы обмотки I и II следует в сторону диаметрально противоположную концам обмотки III, но все выводы должны быть на одном из торцов катушки. В таком же порядке располагают и гибкие выводы, которые закрепляют нитками и клеем на прокладке из электрокартона (прессшпана). Перед заливкой выводы маркируют.

Кроме КУ202Н, в блоке можно применить тринистор КУ221 с буквенными индексами А-Г. При выборе тринистора следует принять во внимание, что, как показывает опыт, КУ202Н по сравнению с КУ221 имеют в большинстве случаев меньший ток открывания, но более критичны к параметрам импульса запуска (длительности и частоте). Поэтому для случая использования тринистора из серии КУ221 номиналы элементов цепи удлинения искры необходимо скорректировать — конденсатор С3 должен иметь емкость 0,25 мкФ, а резистор R4 — сопротивление 620 Ом.

Транзистор КТ837 может быть с любыми буквенными индексами, кроме Ж, И, К, Т, У, Ф. Желательно, чтобы статический коэффициент передачи тока не был менее 40. Применение транзистора другого типа нежелательно.

Теплоотвод транзистора должен иметь полезную площадь не менее 250 кв.см. В роли теплоотвода удобно использовать металлический кожух блока или его основание, которые следует дополнить охлаждающими ребрами. Кожух должен обеспечивать и брызгозащищенность блока.

Стабилитрон VD3 также необходимо устанавливать на теплоотвод. В блоке он представляет собой две полосы размерами 60x25x2 мм, согнутые П-образно и вложенные одна в другую. Стабилитрон Д817Б можно заменить последовательной цепью из двух стабилитронов Д816В; при бортовом напряжении 14 В и частоте искрообразования 20 Гц эта пара должна обеспечивать на накопители напряжение 350…360В. Каждый из них устанавливают на небольшой теплоотвод. Стабилитроны подбирают только после выбора и установки тринистора.

Стабилитрон VD1 подборки не требует, но он обязательно должен быть в металлическом корпусе. Для увеличения общей надежности блока целесообразно этот стабилитрон снабдить небольшим теплоотводом в виде обжимки из полоски тонкого дюралюминия.

Стабистор КС119А (VD2) можно заменить тремя диодами Д223А (или другими кремниевыми диодами с импульсным прямым током не менее 0,5 А), включенными последовательно.

Большинство деталей блока смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Плата разработана с учетом возможности монтажа деталей при различных вариантах замены.

Для блока, предназначенного работать в местностях с суровым зимним климатом, оксидный конденсатор С1 желательно использовать танталовый с рабочим напряжением не ниже 10 В. Его устанавливают вместо большой перемычки на плате, при этом точки подключения алюминиевого оксидного конденсатора (он-то и показан на плате), пригодного для работы в подавляющем большинстве климатических зон, следует замкнуть перемычкой соответствующей длины. Конденсатор С2-МБГО, МБГЧ или К73-17 на напряжение 400…600 В.

В случае выбора для блока тринистора из серии КУ221 нижнюю по рис.2 часть платы необходимо скорректировать так, как это показано на рис.3. При монтаже тринистора необходимо один из винтов его крепления изолировать от печатной дорожки общего провода.

Проверку работоспособности и тем более регулировку следует проводить именно с такой катушкой зажигания, с которой блок будет работать в дальнейшем. Следует иметь в виду, что включение блока без катушки зажигания, нагруженной запальной свечой, совершенно недопустимо. Для проверки вполне достаточно измерять пиковым вольтметром напряжение на накопительном конденсаторе С2. Таким вольтметром может служить авометр, имеющий предел постоянного напряжения 500 В. Авометр подключают к конденсатору С2 через диод Д226Б (или подобный), а зажимы авометра шунтируют конденсатором емкостью 0,1…0,5мкф, на напряжение 400…600 В.

При номинальном напряжении питания (14 В) и частоте искрообразования 20 Гц напряжение на накопителе должно находиться в пределах 345…365 В. Если напряжение меньше, то прежде всего подбирают тринистор с учетом сказанного выше. Если после подборки будет обеспечено искрообразоеание при понижении напряжения питания до 3 В, но на конденсаторе С2 при номинальном напряжении питания будет повышенное напряжение, следует подобрать стабилитрон VD3 с несколько пониженным напряжением стабилизации.

Далее проверяют блок на высшей частоте искрообраэования (200 Гц), поддерживая номинальное бортовое напряжение. Напряжение на конденсаторе С2 должно находиться в пределах 185…200 В, а потребляемый блоком ток после непрерывной работы в течение 15…20 мин не должен превышать 2,2 А. Если транзистор за это время нагреется выше 60°С при комнатной окружающей температуре, тёплоотводящую поверхность следует несколько увеличить. Конденсатор С3 и резистор R4 подборки, как правило, не требуют. Однако для отдельных экземпляров тринисторов (как того, так и другого типа) может потребоваться корректировка номиналов, если на частоте 200 Гц будет обнаружена неустойчивость в искрообраэовании. Она проявляется обычно в виде кратковременного сбоя в показаниях вольтметра, подключенного к накопителю, и хорошо заметна на слух.

В этом случае следует увеличить емкость конденсатора С3 на 0,1…0,2 мкФ, а если это не поможет, вернуться к прежнему значению и увеличить сопротивление резистора R4 на 100…200 Ом. Одна из этих мер, а иногда и обе вместе, обычно устраняют неустойчивость запуска. Заметим, что увеличение сопротивления уменьшает, а увеличение емкости увеличивает длительность искры.

Если есть возможность воспользоваться осциллографом, то полезно убедиться в нормальном течении колебательного процесса в катушке зажигания и фактической его длительности. До полного затухания должны быть хорошо, различимы 9-11 полуволн, суммарная длительность которых должна быть равна 1,3…1,5 мс на любой частоте искрообразования. Вход X осциллографа следует подключать к общей точке обмоток катушки зажигания.

Типичный вид осциллограммы показан на рис.4. Всплески посредине минусовых полуволн соответствуют единичным импульсам блокинг-генератора при изменении направления тока в катушке зажигания.

Целесообразно проверить также зависимость напряжения на накопительном конденсаторе от бортового напряжения.

Ее вид не должен заметно отличаться от показанного на рис.5.

Изготовленный блок рекомендуется устанавливать в моторном отсеке в передней, более прохладной его части. Искрогасящий конденсатор прерывателя следует отключить и соединить его вывод с соответствующим контактом розетки разъема Х1. Переход на классическое зажигание выполняют, как и в прежней конструкции, установкой вставки-замыкателя Х1.3.

В заключение отметим, что попытки получить столь же «длинную» искру с трансформатором на стальном магнитопроводе, даже из стали самого высокого качества, не приведут к успеху. Наибольшая длительность, которая может быть достигнута, — 0,8…0,85 мс. Тем не менее блок почти без изменений (сопротивление резистора R1 следует уменьшить до 6…8 Ом) работоспособен и с трансформатором на стальном магнитопроводе с указанными намоточными характеристиками, и эксплуатационный качества блока выше, чем у его прототипа .

Литература:
1. Г. Карасев. Стабилизированный блок электронного зажигания. — Радио, 1988, № 9, с. 17; 1989, №5, с.91
2. П.Гацанюк. Усовершенствованная электронная система зажигания. В сб.: «В помощь радиолюбителю», вып: 101, с. 52, — М.: ДОСААФ.
3. А. Синельников. Электроника в автомобиле. — М.:, Радио и связь, 1985, с.46.
4. Ю. Архипов. Полуавтоматический блок зажигания. — Радио, 1990, № 1, с. 31-34; №2, с. 39-42.